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Abstract

The effects of cancellation errors on the convergence characteristics of preconditioned Navier–Stokes equations at low
Mach numbers are analyzed. Laminar viscous flows around a circular cylinder are calculated at different Mach numbers. It
is shown that the cancellation error in the energy equation grows faster than those in the other equations, as the Mach
number decreases. It is also shown that the cancellation problem of the energy equation is due to the off-diagonal element
that is related to a pressure change in the preconditioner.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Preconditioning methods have received growing attention due to their various applications in CFD fields.
The difficulty in solving the compressible flow at a low Mach number is associated with the large disparity in
the magnitudes of eigenvalues, which is called eigenvalue stiffness [1]. The preconditioning method pre-mul-
tiplies the time derivative by a suitable preconditioner that scales the eigenvalues to the same order of mag-
nitude. A number of preconditioning approaches have been suggested to solve the stiffness problem [2–9].
Choi and Merkle [5] suggested a preconditioner that introduced well-conditioned eigenvalues and has been
extended for use in many CFD applications [6,7,10–13].

Lee [16] reported that preconditioned Euler equations have serious convergence problems at low Mach
numbers and that there is a Mach number limit where converged solutions could not be obtained. This is
attributed to cancellation errors that occur due to accumulation effects of round-off errors. Round-off errors
are mainly determined by the precision of floating-point variables and thus are inevitable. However, as shown
by Sesterhenn et al. [17], cancellation errors can be avoided to a certain extent by a proper manipulation. Lee
[16] reported that the convergence characteristics are strongly related to the behavior of the preconditioner,
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while Sesterhenn et al. [17] paid their attention to the effects of the cancellation errors on the spatial discret-
ization. However, they did not address the relationship between cancellation errors and convergence charac-
teristics. In the present study, the relationship between cancellation errors and convergence characteristics will
be thoroughly analyzed.
2. Cancellation errors

2.1. Governing equations

The governing equations considered in the present study are the two-dimensional preconditioned Navier–
Stokes equations
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Density is determined by the thermodynamic state equation, p ¼ qRT . The preconditioner, C, considered in
the present study is Choi and Merkle’s preconditioner. Multiplying the system of equations by the inverse
of the preconditioner results in a different form of the system of equations as follows:
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The transformed system of Eqs. (2.1.2) is mathematically the same as the original system of Eqs. (2.1.1). How-
ever, these systems of equations are different from each other in numerical terms. This will be discussed in later
section.

The governing equations are non-dimensionalized with the quantities at the infinite far field: p1 (static pres-
sure), q1 (density), T1 (temperature), c1 (speed of sound), R1 (gas constant), c1 (specific heats ratio), l1
(viscosity), and L (characteristic length).
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As shown in the previous study [16], the non-dimensionalized governing equations are of the same form as the
original equations. Hereafter, the hat notations will be dropped for convenience. The non-dimensionalized
quantities have the following orders of magnitude:
u; v � OðMÞ; p; q; T � Oð1Þ; ho � Oð1Þ; R; cp � Oð1Þ; b � OðM2Þ: ð2:1:4Þ
2.2. Error analysis

The numerical operator that expresses round-off errors during arithmetic operations is defined as follows:
ha � bi ¼ ða � bÞð1þ eÞ: ð2:2:1Þ

The operator ‘‘*’’ denotes one of the floating-point arithmetic operators. The error is estimated as
jej 6 5� 10�d when d decimals are available for representation of the mantissa. A machine provides various
precisions of floating-point variable such as ‘‘single,’’ ‘‘double’’ or ‘‘extended double’’ precisions. Thus, the
magnitude of d is determined due to the machine itself and the precision provided by the machine.

The most common serious problems resulting from a round-off error occur in cases where many steps are
involved with rounding occurring at each step, or when two quantities very close to each other are subtracted
or when a number is divided by another number close to zero [18]. Let the ‘‘serious’’ round-off error be sym-
bolized as ‘‘d’’ to distinguish it from the ‘‘normal’’ round-off error ‘‘e’’. Let the round-off error e be a constant
for simplicity.

In the present study, low Mach number flows will be considered, since the cancellation effects appear at low
Mach numbers. Also, the explicit calculations are considered for simplicity. The explicit form of the discret-
ized system of equations can be expressed as follows:
CDQ ¼ RES; ð2:2:2aÞ
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Assume that the residual vector, RES, is a well discretized or an error-free one. The change of solution vector,
DQ, can be expressed in the following form:
Dp ¼ hbRP i ¼ bRP ð1þ eÞ; ð2:2:3aÞ
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The errors occurred during the operation of dividing by b are denoted as du for momentum equation and dT

for the energy equation, since b goes to zero as the Mach number approaches zero. The preconditioning
parameter b is c2M2 in subsonic flows. Ideal or error-free solutions are assumed and symbolized by Dp�,
Du�, DT �. Then the errors occurring in the calculations are expressed in terms of the Mach numbers.
Dp � Dp� ¼ Dp � bRP ¼ e; ð2:2:4aÞ
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The errors du and dT grow as the Mach number decreases since dividing by b induces more serious errors as b
approaches zero. However, du would be smaller than dT by M, since u � OðMÞ and h0 � Oð1Þ, as shown in Eq.
(2.1.4). Thus the errors du and dT can be expressed as follows:
du ¼ duðMÞ ¼ eM�m; m > 0; ð2:2:5aÞ
dT ¼ dT ðMÞ ¼ eM�2m; m > 0: ð2:2:5bÞ
Then, considering the orders of the non-dimensionalized quantities, Eq. (2.2.4) can be reduced as follows:
Du� Du� � �Dp�
du
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DT � DT � � �Dp�
dT

M2
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The pressure change is irrespective of the Mach number. While the velocity error grows by M�ð1þmÞ and the
temperature error grows by M�2ð1þmÞ, which implies that convergence problem in the energy equation is more
serious than those in the other equations.

Now, consider the cancellation errors in the system of equations (2.1.2). The explicit form of the system of
equations (2.1.2) can be expressed as follows:
DQ ¼ C�1RES: ð2:2:7Þ

The solution change DQ can be expressed in the following form:
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Du ¼ 1

q
hRu � huRpii

� �
¼ Ru � uRP ð1þ eÞ

q
ð1þ eÞ2 � Du� � u

q
Dp�

e
b
; ð2:2:8bÞ

DT ¼ 1

qcp
hRT � hhh0 � b� u2 � v2iRpi � huRui � hvRvii

� �

¼ RT � ½ðh0 � b� u2 � v2ÞRP ð1þ eÞ þ uRu þ vRv�ð1þ eÞ
qcp

ð1þ eÞ2

� DT � � h0 � b� u2 � v2

qcp
Dp�

2e
b
� uRu þ vRv

qcp
e: ð2:2:8cÞ
Then, the errors can be expressed in terms of the Mach number as follows:
Du� Du� � �Dp�eM�1; ð2:2:9aÞ
DT � DT � � �Dp�eM�2: ð2:2:9bÞ
The velocity error grows by M�1, while the temperature error grows by M�2, which implies that convergence
problem in the energy equation is more serious than those in the other equations. Also, comparison between
Eqs. (2.2.6) and (2.2.9) suggests that the transformation by multiplying the inverse of the preconditioner to the
governing equations would alleviate cancellation problems.

Another important aspect related to the definition of the reference Mach number or preconditioning
parameter is shown in Eqs. (2.2.6) and (2.2.9). As mentioned by Turkel [1], it is very difficult or impossible
to obtain solutions of the Navier–Stokes equations with the definition for the Euler equations,
M2

r ¼ minð1;M2Þ. Eqs. (2.2.6) and (2.2.9) show that the cancellation errors go to infinity, if a local Mach num-
ber approaches zero. In viscous flows, there are many regions at a smaller Mach number than the free-stream
Mach number, such as at a boundary layer and a wake. Thus, the cancellation errors in locally low speed
regions are much larger than those in the surrounding regions, which would deteriorate the convergence char-
acteristics. In order to avoid this problem, most of the previous studies [1–7,10–15] adopted a cut-off strategy
as shown in Eq. (2.1.1d).
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2.3. Effects of off-diagonal elements

As shown above, the cancellation error in the energy equation grows or is magnified through the off-diag-
onal element h0=b� 1 in the preconditioner. This can be verified if an approximate preconditioner, by drop-
ping the off-diagonal element in the energy equation, is introduced. The approximate preconditioner
considered in the present study is
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The term hT is introduced to compensate for the off-diagonal term h0=b� 1 and the term hP is a modified b
introduced to augment numerical stabilities. Let an approximate set of preconditioning parameters be intro-
duced with an assumption that the solutions satisfy the isentropic relationship, Dp=p ¼ c=ðc� 1ÞDT=T . Then
the parameters are as follows:
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This approach would lead to un-physical behavior of the solutions. However, it gives meaningful information
about the effects of the cancellation errors. Then, the velocity change is the same as Eq. (2.2.8b). The pressure
change and the temperature change become
Dp ¼ hhP RP i ¼ hP RP ð1þ eÞ; ð2:3:3aÞ

DT ¼ hhT hRT � hhquiDui þ hhqviDviii ¼ hT ½RT � ðquDuþ qvDvÞð1þ eÞ2�ð1þ eÞ2

� hT ½RT � ðquDuþ qvDvÞ� � hT ½quDuþ qvDv�ð2eÞ: ð2:3:3bÞ
There is no serious cancellation error in the temperature field with the decrease of the Mach numbers since
hT � OðM2Þ.

3. Numerical methods

3.1. Discretization

A finite volume method is used to discretize the preconditioned governing equations. In order to get the flux
vector at the surface of a grid cell, the Roe type FDS (flux difference splitting) scheme suggested by Guillard
and Viozat [19] is used. The van Albada limiter [20] is used to avoid numerical oscillations. The LU-SGS
(lower upper symmetric Gauss Seidel) scheme [11,13] is used for time integration.
3.2. Grid system and boundary conditions

The calculations in the present study were conducted on an O-type grid system. The size of the computa-
tional domain is taken to be a sufficiently large domain, in order to minimize the boundary effects. The radius
of the outer boundary is 60 times that of the cylinder diameter. The number of grid points is 10,800 (120 · 90).
The grid points in the circumferential direction are evenly distributed and the grid points in the radial direction
are clustered towards the cylinder wall up to where the aspect ratio of the nearest grid point from the wall is
about unity.

The inflow and outflow boundaries were specified with the characteristic boundary conditions [1,21,22]. As
suggested by Okong’o and Bellan [22], the density and velocity at the inflow boundary were fixed, and the
pressure at the inflow boundary was updated according to the outgoing wave amplitude variations determined
from interior points. The pressure at the outflow boundary was fixed, and the remaining wave amplitude vari-
ations were determined from the interior points. A no-slip boundary condition is applied at the solid walls. On
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adiabatic walls, the temperature, density and pressure are determined to be the same as those at the nearest
grid point.

3.3. Algorithms and precisions

In order to distinguish numerical methods, let symbols be introduced. Symbol ‘‘CM’’ denotes the method
adopting the Choi and Merkle’s preconditioner, symbol ‘‘CI’’ denotes the method adopting the system of gov-
erning equations (2.1.2) that is transformed by multiplying the inverse of the Choi and Merkle’s precondi-
tioner to the original system of governing equations (2.1.1), and symbol ‘‘AP’’ denotes the method
adopting the approximate preconditioner (2.3.1).

The concept of relative treatments of all the variables and flux vectors, suggested by Lee [16] and Sesterhenn
et al. [17], is adopted to reduce the cancellation errors.
/ ¼ �/þ /0; / ¼ u; v; ho; p; T ; q; ð3:3:1aÞ
Ek ¼ �Ek þ E0k; Ek ¼ E; F : ð3:3:1bÞ
The part with an over-bar, �/, denotes a fixed one, while the part with a prime, /0, denotes a relative one.
The calculations were conducted using double precision (‘‘double’’ in C language) floating-point variables

that store 15 significant digits.

3.4. Estimation of convergence

The residual decays of velocity, pressure and temperature are plotted to represent the convergence charac-
teristics. Lee [16] showed that it was necessary to renormalize the residuals in order to represent the conver-
gence characteristics as follows:
RESðpÞ ¼
P

i;jjDpj
N GM2

1
; RESðu; vÞ ¼

P
i;j

P
q¼u;vjDqj

NGM1
; RESðT Þ ¼
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1
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The term NG denotes the number of grid points.
4. Calculation results

4.1. Verification of computational code

The laminar viscous flows around circular cylinders were calculated with various methods. Fig. 1 shows the
flow fields around a circular cylinder at Re = 20 and Re = 40 that are obtained with method CM. The calcu-
lation results obtained with method CI are exactly same as those obtained with method CM. The flow pressure
and temperature fields are well resolved and the recirculation flows are well captured. To verify the computa-
tion code used in the present study, the characteristics calculated in the present study are compared with those
of the previous calculations [23–25]. The comparisons are shown in Table 1.

The maximum differences of the reattachment lengths, LR, and the drag coefficients, CD, among the meth-
ods are within 2%. Thus, the calculation methods used in the present study give reasonable results.
4.2. Effects of transformation of governing equations

Fig. 2 compares the convergence characteristics of methods CM and CI at M ¼ 10�2, 10�4 and 10�6. The
horizontal guidelines indicate the critical renormalized residuals required for enough convergence. There are
slight differences between methods CM and CI in the convergences of the pressure field and the velocity field.
However, method CM shows serious convergence problems in the energy equation. The renormalized temper-
ature residual of method CM dramatically grows as the Mach number decreases, which means that the case at
a lower Mach number needs a higher number of iterations to converge.



Fig. 1. Pressure fields, ðp � p1Þ=p1, and temperature fields, ðT � T1Þ=T1, at Re = 20 and Re = 40. The inflow Mach number is 10�3.

Table 1
Characteristic numbers for flow past a circular cylinder

Re = 20 Re = 40

LR CD LR CD

Dennis and Chang [23] 0.94 2.05 2.35 1.52
Fornberg [24] 0.91 2.00 2.24 1.50
Linnick and Fasel [25] 0.93 2.06 2.28 1.54
Present (CM, CI) 0.93 2.04 2.24 1.54
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Fig. 3 shows the changes of the temperature field according to the iteration. Method CI requires the same
iterations to obtain converged temperature fields regardless of Mach numbers, while method CM requires
more iterations as the Mach number decreases. This verifies that serious cancellation errors in method CM
occur during the operation of dividing by b that goes to zero as the Mach number approaches zero, and that
the transformation of the governing equations by multiplying the inverse of the preconditioner to the govern-
ing equations (2.1.1) alleviates serious cancellation problems.

4.3. Effects of off-diagonal elements

Fig. 4 compares the convergence characteristics of methods CI and AP at very low Mach numbers. For the
calculations with method CI, the convergences of the continuity equation and the momentum equation at dif-
ferent Mach numbers are exactly same, respectively. However, when M 6 10�7, the energy equation does not
converge over the guideline and the case at a lower Mach number shows a larger magnitude of the renormal-
ized residual. However, for the calculations with method AP, the convergences of all the equations at different
Mach numbers are exactly same, respectively. This suggests that these serious convergence problems, which
are due to the cancellation errors, are strongly related to the off-diagonal element h0=b� 1.

Fig. 5 shows the pressure fields and the temperature fields at very low Mach numbers. In the case where
method CI is used, there are unphysical wiggle patterns in wake regions at M ¼ 10�7. Moreover, method
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CI cannot resolve any meaningful features of the temperature fields at M ¼ 10�8. Method AP gives a fully
converged temperature field even at M ¼ 10�9. However, the temperature field calculated with method AP
is exactly same as the pressure field and does not resolve temperature rises near the boundary layer and the
wake region, which means that the approximate preconditioner equation (2.2.7) does not work well. Even
though method AP does not provide a well-resolved temperature field, these results show clear evidence that
the convergence problem in the energy equation is due to the cancellation errors that are magnified by the
off-diagonal term h0=b� 1.



Fig. 3. Changes of temperature fields according to iterations at various Mach numbers. Re = 40.
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5. Concluding remarks

An error analysis was conducted to analyze the influences of cancellation errors on the convergence char-
acteristics of the Navier–Stokes equations and also numerical calculations were conducted to confirm the
analysis.

When the Choi and Merkle’s preconditioner is used, the renormalized temperature residual grows and thus
the number of iterations required to obtain a fully converged temperature field increases as the Mach number
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decreases. The transformation of the governing equations by multiplying the inverse of the preconditioner
solves this kind of convergence problem.

It is difficult or impossible to obtain a fully converged temperature field at a Mach number below 10�6,
while the pressure field and velocity field can be obtained at a much lower Mach number. This is due to
the fact that the cancellation errors in the energy equation grow faster than those in the continuity equation
and the momentum equation, as the Mach number decreases. The calculation with an approximate



Fig. 5. Temperature field at various low Mach numbers. Re = 40.
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preconditioner shows that the off-diagonal element related to the pressure change magnifies the round-off
errors and prevents the energy equation from converging.
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